Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Methoxyphenyl)-7,7-dimethyl-5oxo-5,6,7,8-tetrahydrochromene-2,5dione

Hao Shi

The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: shihao@zjut.edu.cn

Received 16 November 2009; accepted 19 November 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.046; wR factor = 0.128; data-to-parameter ratio = 7.1.

The title compound, $C_{18}H_{20}O_4$, was synthesized by the reaction of 4-methoxybenzaldehyde, 2,2-dimethyl-1,3-dioxane-4,6-dione and 5,5-dimethylcyclohexane-1,3-dione with triethylbenzylammonium chloride in water as a green solvent. In the molecule of the title compound, the six-membered pyranone ring of the hexahydrocoumarin system has a screw-boat conformation while that of the dimethyl-cyclohexenone system has a distorted envelope conformation. The CMe₂ portion of this ring is disordered over two positions with refined occupancies of 0.721 (7) and 0.279 (7).

Related literature

For background to the applications of coumarin derivatives see: Wang *et al.* (1999); Yang (2001). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{18}H_{20}O_4$ $M_r = 300.34$ Orthorhombic, $P2_12_12_1$ a = 5.9793 (6) Å b = 11.7371 (12) Å c = 22.565 (2) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\rm min} = 0.968, T_{\rm max} = 0.985$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 233 \text{ parameters} \\ wR(F^2) &= 0.128 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.28 \text{ e } \text{ Å}^{-3} \\ 1643 \text{ reflections} & \Delta\rho_{\text{min}} = -0.26 \text{ e } \text{ Å}^{-3} \end{split}$$

V = 1583.6 (3) Å³

Mo $K\alpha$ radiation

 $0.37 \times 0.21 \times 0.17 \; \text{mm}$

7934 measured reflections

1643 independent reflections

1288 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.075$

Z = 4

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The research was supported by the Open Foundation of Key Disciplines within the Zhejiang Provincial Key Disciplines.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2689).

References

- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. F., Qu, Y. & Gu, F. (1999). Speciality Petrochem. 1, 49–52.
- Yang, J. S. (2001). West China J. Pharm. Sci. 16, 285–288.

Acta Cryst. (2009). E65, o3216 [doi:10.1107/S160053680904971X]

4-(4-Methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrochromene-2,5-dione

H. Shi

Comment

Coumarin is an important chemical with unique characteristics. It is widely used in hand soaps, detergents, lotions and laser dyes (Wang *et al.*, 1999). Coumarin and some of its derivatives have been tested in pharmacology for treatment of HIV (Yang, 2001). To obtain a coumarin in a more environmentally friendly way, water was used as a green solvent in the synthesis of the title compound.

In the molecule of the title compound, the two six membered rings of the hexahydrocoumarin system are not planar, the cyclohexene ring A (O1/C1–C4/C9) adopts the screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q= 0.468 (5) Å, θ = 64.4 (5)° and φ = 143.5 (6)°; for the ring B (C4–C9), disorder was modelled for the C6, C10, C11 atoms resolved over two positions with occupancies of 0.721 (7) and 0.279 (7). Ring C (C12–C17) is, of course, planar. The dihedral angle between the least-squares plane of ring A(O1/C1–C4/C9) and that of ring C (C12–C17) is 87.59 (12)°.

Experimental

A mixture of 4-methoxybenzaldehyde (100 mmol), 5,5-dimethyl-1,3-cyclohexanedione (100 mmol), 2,2-dimethyl-1,3-dioxane-4,6-dione (100 mmol), triethylbenzylammonium chloride(TEBA) (15 mmol) and 400 mL of water was stirred at 65°C for 4 h (Fig.2). The reaction mixture was cooled to room temperature, the precipitated product was filtered and recrystallized from ethanol to give the title compound. Crystals suitable for X-ray structure analysis were obtained by slow evaporation from methanol solution at room temperature.

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å, They were treated as riding atoms, with $U_{iso}(H) = 1.5Ueq(C)$ for the methyl H atoms and 1.2Ueq(C) for other H atoms. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray data and Friedel pairs were merged.

Figures

Fig. 1. Structure of 1 showing 30% probability displacement ellipsoids and the atom numbering scheme. Bonds to atoms of the minor disorder component are shown as dashed lines.

Fig. 2. The preparation of the title compound.

F(000) = 640 $D_{\rm x} = 1.260 \text{ Mg m}^{-3}$

 $\theta = 2.5-25.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KPrism, colorless $0.37 \times 0.21 \times 0.17 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2932 reflections

4-(4-Methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrochromene-2,5-dione

Crystal data

$C_{18}H_{20}O_4$
$M_r = 300.34$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 5.9793 (6) Å
<i>b</i> = 11.7371 (12) Å
<i>c</i> = 22.565 (2) Å
$V = 1583.6 (3) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	1643 independent reflections
Radiation source: fine-focus sealed tube	1288 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.075$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -7 \rightarrow 6$
$T_{\min} = 0.968, T_{\max} = 0.985$	$k = -13 \rightarrow 10$
7934 measured reflections	$l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0461P)^{2} + 0.553P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
1643 reflections	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.031 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.2602 (5)	0.1771 (2)	0.05280 (10)	0.0674 (8)	
02	0.1786 (9)	0.0959 (3)	-0.03152 (13)	0.1292 (18)	
03	0.8756 (6)	0.0717 (3)	0.17213 (14)	0.0865 (10)	
O4	0.2049 (6)	-0.4043 (2)	0.11499 (12)	0.0742 (9)	
C1	0.3211 (11)	0.1093 (3)	0.00511 (16)	0.0782 (15)	
C2	0.5491 (10)	0.0631 (4)	0.00509 (16)	0.0766 (15)	
H2A	0.6523	0.1218	-0.0079	0.092*	
H2B	0.5577	0.0005	-0.0229	0.092*	
C3	0.6193 (8)	0.0208 (3)	0.06653 (15)	0.0596 (10)	
H3	0.7809	0.0069	0.0657	0.072*	
C4	0.5755 (7)	0.1163 (3)	0.10917 (15)	0.0498 (9)	
C5	0.7227 (8)	0.1351 (4)	0.1596 (2)	0.0757 (13)	
C6	0.7088 (10)	0.2528 (4)	0.1872 (2)	0.0597 (17)	0.721 (7)
H6A	0.7831	0.3072	0.1616	0.072*	0.721 (7)
H6B	0.7866	0.2523	0.2249	0.072*	0.721 (7)
C6'	0.584 (3)	0.1803 (12)	0.2150 (6)	0.064 (5)	0.279 (7)
H6'1	0.4749	0.1236	0.2271	0.077*	0.279 (7)
H6'2	0.6836	0.1945	0.2481	0.077*	0.279 (7)
C7	0.4652 (6)	0.2907 (3)	0.19705 (14)	0.0516 (9)	
C8	0.3415 (7)	0.2858 (3)	0.13786 (14)	0.0591 (10)	
H8A	0.1821	0.2814	0.1455	0.071*	
H8B	0.3695	0.3559	0.1163	0.071*	
С9	0.4070 (7)	0.1883 (3)	0.10012 (13)	0.0502 (9)	
C10	0.3528 (11)	0.2039 (5)	0.2381 (2)	0.0695 (19)	0.721 (7)
H10A	0.4307	0.2017	0.2753	0.104*	0.721 (7)
H10B	0.3571	0.1299	0.2201	0.104*	0.721 (7)
H10C	0.2001	0.2258	0.2447	0.104*	0.721 (7)
C11	0.4615 (15)	0.4084 (6)	0.2232 (3)	0.080 (2)	0.721 (7)
H11A	0.5441	0.4088	0.2597	0.119*	0.721 (7)
H11B	0.3097	0.4307	0.2308	0.119*	0.721 (7)
H11C	0.5286	0.4611	0.1959	0.119*	0.721 (7)
C10'	0.651 (3)	0.3774 (11)	0.1822 (7)	0.062 (4)	0.279 (7)
H10D	0.5839	0.4465	0.1678	0.094*	0.279 (7)

H10E	0.7469	0.3463	0.1522	0.094*	0.279 (7)
H10F	0.7361	0.3934	0.2172	0.094*	0.279 (7)
C11'	0.326 (4)	0.3516 (15)	0.2465 (7)	0.073 (5)	0.279 (7)
H11D	0.4237	0.3733	0.2783	0.109*	0.279 (7)
H11E	0.2137	0.3005	0.2612	0.109*	0.279 (7)
H11F	0.2560	0.4182	0.2303	0.109*	0.279 (7)
C12	0.5050 (7)	-0.0900 (3)	0.08200 (13)	0.0496 (9)	
C13	0.3053 (7)	-0.0949 (3)	0.11313 (14)	0.0522 (9)	
H13	0.2407	-0.0275	0.1263	0.063*	
C14	0.1992 (7)	-0.1971 (3)	0.12516 (14)	0.0545 (9)	
H14	0.0657	-0.1980	0.1463	0.065*	
C15	0.2929 (7)	-0.2976 (3)	0.10557 (15)	0.0533 (9)	
C16	0.4910 (7)	-0.2948 (3)	0.07371 (15)	0.0595 (10)	
H16	0.5539	-0.3623	0.0601	0.071*	
C17	0.5949 (7)	-0.1928 (3)	0.06213 (14)	0.0570 (9)	
H17	0.7277	-0.1922	0.0406	0.068*	
C18	0.0106 (9)	-0.4122 (4)	0.1497 (2)	0.0809 (13)	
H18A	0.0434	-0.3882	0.1895	0.121*	
H18B	-0.0408	-0.4897	0.1502	0.121*	
H18C	-0.1035	-0.3641	0.1333	0.121*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.094 (2)	0.0597 (15)	0.0483 (13)	0.0106 (16)	-0.0219 (15)	0.0002 (11)
02	0.216 (5)	0.103 (2)	0.0688 (18)	0.026 (3)	-0.067 (3)	-0.0170 (18)
03	0.071 (2)	0.0778 (19)	0.110 (2)	0.0202 (19)	-0.0248 (19)	-0.0096 (18)
O4	0.090 (2)	0.0495 (15)	0.0830 (18)	-0.0081 (17)	0.0002 (19)	-0.0120 (13)
C1	0.139 (5)	0.058 (2)	0.0377 (18)	0.008 (3)	-0.018 (3)	0.0036 (17)
C2	0.124 (4)	0.061 (2)	0.045 (2)	0.003 (3)	0.016 (3)	0.0031 (18)
C3	0.073 (3)	0.053 (2)	0.0527 (19)	0.003 (2)	0.010 (2)	-0.0003 (16)
C4	0.056 (2)	0.0419 (17)	0.0511 (18)	-0.0029 (18)	0.0013 (18)	0.0013 (14)
C5	0.067 (3)	0.069 (3)	0.092 (3)	0.020 (3)	-0.025 (3)	-0.019 (2)
C6	0.061 (4)	0.057 (3)	0.061 (3)	-0.004 (3)	-0.006 (3)	-0.005 (2)
C6'	0.077 (11)	0.058 (8)	0.057 (8)	-0.006 (9)	-0.015 (8)	0.006 (6)
C7	0.058 (2)	0.052 (2)	0.0456 (18)	-0.002 (2)	-0.0049 (17)	-0.0024 (15)
C8	0.072 (3)	0.0501 (19)	0.0554 (19)	0.009 (2)	-0.010 (2)	-0.0061 (16)
C9	0.065 (2)	0.0471 (17)	0.0381 (16)	-0.002 (2)	-0.0074 (18)	0.0046 (14)
C10	0.083 (5)	0.082 (4)	0.044 (3)	0.000 (4)	0.001 (3)	0.011 (3)
C11	0.097 (6)	0.071 (4)	0.071 (4)	0.009 (4)	-0.022 (4)	-0.019 (3)
C10'	0.063 (9)	0.055 (8)	0.069 (8)	-0.007 (8)	0.002 (8)	-0.008 (7)
C11'	0.084 (13)	0.074 (10)	0.061 (9)	0.006 (10)	-0.007 (9)	-0.016 (8)
C12	0.062 (2)	0.0481 (19)	0.0382 (16)	0.0058 (19)	-0.0006 (17)	-0.0007 (14)
C13	0.063 (2)	0.0440 (18)	0.0500 (18)	0.0108 (19)	0.0036 (19)	-0.0043 (15)
C14	0.059 (2)	0.053 (2)	0.0510 (18)	0.005 (2)	0.0000 (19)	-0.0069 (16)
C15	0.064 (2)	0.0478 (19)	0.0477 (17)	0.000 (2)	-0.0131 (19)	-0.0059 (15)
C16	0.072 (3)	0.050 (2)	0.057 (2)	0.013 (2)	-0.002 (2)	-0.0141 (17)
C17	0.064 (2)	0.057 (2)	0.0498 (19)	0.007 (2)	0.0061 (19)	-0.0057 (16)

C18	0.083 (3)	0.061 (2)	0.099 (3)	-0.014 (3)	-0.002 (3)	0.003 (2)
Geometric parar	neters (Å. °)					
	(,)	1 207 (5)	CP	<u></u>		1 470 (5)
01-C1		1.387 (5)	C8-			1.4/9 (5)
01 - C9		1.388 (4)		H8A		0.9700
02—C1		1.197 (6)		—H8B		0.9700
03-05		1.213 (5)	Cl	0—HI0A		0.9600
04		1.376 (4)	Cl	0—H10B		0.9600
04		1.404 (6)	Cl	0—H10C		0.9600
C1 - C2		1.46/(/)	CI	I—HIIA		0.9600
C2—C3		1.531 (5)	CI	I—HIIB		0.9600
C2—H2A		0.9700	CI			0.9600
C2—H2B		0.9700	Cl	0'—HIOD		0.9600
C3—C4		1.500 (5)	Cl	0°—HI0E		0.9600
C3-C12		1.510 (5)	Cl	0°—H10F		0.9600
C3—H3		0.9800	CI	I'—HIID		0.9600
C4—C9		1.331 (5)	CI	I'—HIIE		0.9600
C4—C5		1.455 (5)	CI	I'—HIIF		0.9600
C5—C6		1.517 (6)	CL	2—C13		1.386 (5)
C5—C6'		1.592 (16)	CL	2—C17		1.395 (5)
C6—C7		1.539 (7)	CL	3—C14		1.383 (5)
С6—Н6А		0.9700	CL	3—H13		0.9300
С6—Н6В		0.9700	Cl	4—C15		1.379 (5)
C6'—C7		1.532 (15)	Cl	4—H14		0.9300
С6'—Н6'1		0.9700	Cl	5—C16		1.386 (6)
С6'—Н6'2		0.9700	Cl	6—C17		1.374 (5)
C/—C11		1.503 (7)	Cl	6—H16		0.9300
C7—C8		1.528 (5)	Cl	7—H17		0.9300
C7—C10		1.533 (6)	Cl	8—H18A		0.9600
C7—C10'		1.542 (14)	Cl	8—H18B		0.9600
C7—C11'		1.564 (16)	Cl	8—H18C		0.9600
C1—O1—C9		119.0 (3)	C6			116.4 (9)
C15—O4—C18		117.6 (3)	C1	0—C7—C11'		68.8 (8)
O2—C1—O1		115.1 (5)	C6-			137.5 (8)
O2—C1—C2		127.8 (4)	C1	0'—C7—C11'		103.6 (10)
O1—C1—C2		117.1 (4)	C9-	C8C7		113.8 (3)
C1—C2—C3		112.0 (4)	C9-	C8H8A		108.8
C1—C2—H2A		109.2	C7-	—С8—Н8А		108.8
С3—С2—Н2А		109.2	C9-	C8H8B		108.8
C1—C2—H2B		109.2	C7-	C8H8B		108.8
C3—C2—H2B		109.2	H8	А—С8—Н8В		107.7
H2A—C2—H2B		107.9	C4	C9O1		122.4 (3)
C4—C3—C12		114.6 (3)	C4	C9C8		127.1 (3)
C4—C3—C2		106.9 (3)	01	—С9—С8		110.4 (3)
C12—C3—C2		111.4 (3)	C7-	—С10—Н10А		109.5
С4—С3—Н3		107.9	C7-	—С10—Н10В		109.5
С12—С3—Н3		107.9	C7-	—С10—Н10С		109.5
С2—С3—Н3		107.9	C7-			109.5

C9—C4—C5	118.8 (3)	C7—C11—H11B	109.5
C9—C4—C3	120.5 (3)	C7—C11—H11C	109.5
C5—C4—C3	120.6 (3)	C7—C10'—H10D	109.5
O3—C5—C4	123.0 (4)	С7—С10'—Н10Е	109.5
O3—C5—C6	120.3 (4)	H10D—C10'—H10E	109.5
C4—C5—C6	115.2 (4)	C7—C10'—H10F	109.5
O3—C5—C6'	114.5 (6)	H10D-C10'-H10F	109.5
C4—C5—C6'	110.5 (6)	H10E—C10'—H10F	109.5
C6—C5—C6'	49.1 (6)	C7—C11'—H11D	109.5
C5—C6—C7	112.0 (4)	C7—C11'—H11E	109.5
С5—С6—Н6А	109.2	H11D—C11'—H11E	109.5
С7—С6—Н6А	109.2	C7—C11'—H11F	109.5
С5—С6—Н6В	109.2	H11D—C11'—H11F	109.5
С7—С6—Н6В	109.2	H11E—C11'—H11F	109.5
H6A—C6—H6B	107.9	C13—C12—C17	117.3 (3)
C7—C6'—C5	108.4 (8)	C13—C12—C3	122.9 (3)
C7—C6'—H6'1	110.0	C17—C12—C3	119.7 (3)
С5—С6'—Н6'1	110.0	C14—C13—C12	122.0 (3)
С7—С6'—Н6'2	110.0	C14—C13—H13	119.0
С5—С6'—Н6'2	110.0	C12—C13—H13	119.0
H6'1—C6'—H6'2	108.4	C15—C14—C13	119.5 (3)
C11—C7—C8	111.8 (4)	C15—C14—H14	120.3
C11—C7—C6'	132.9 (6)	C13—C14—H14	120.3
C8—C7—C6'	115.1 (6)	O4—C15—C14	125.0 (4)
C11—C7—C10	111.5 (5)	O4—C15—C16	115.4 (3)
C8—C7—C10	106.9 (4)	C14—C15—C16	119.6 (4)
C6'—C7—C10	58.7 (7)	C17—C16—C15	120.4 (3)
C11—C7—C6	109.7 (5)	С17—С16—Н16	119.8
C8—C7—C6	108.8 (3)	С15—С16—Н16	119.8
C6'—C7—C6	49.8 (7)	C16—C17—C12	121.2 (4)
C10—C7—C6	108.1 (4)	С16—С17—Н17	119.4
C11—C7—C10'	59.3 (6)	C12—C17—H17	119.4
C8—C7—C10'	100.5 (6)	O4—C18—H18A	109.5
C6'—C7—C10'	106.5 (9)	O4—C18—H18B	109.5
C10—C7—C10'	152.4 (7)	H18A—C18—H18B	109.5
C6—C7—C10'	58.6 (6)	O4—C18—H18C	109.5
C11—C7—C11'	44.9 (7)	H18A—C18—H18C	109.5
C8—C7—C11'	112.5 (7)	H18B—C18—H18C	109.5
C9-01-C1-02	173 9 (4)	C5—C6—C7—C10'	-1474(8)
C9 - 01 - C1 - C2	-64(5)	$C_{5} - C_{6} - C_{7} - C_{11}'$	137.6(12)
02-C1-C2-C3	-138.4(5)	C11-C7-C8-C9	158.7 (5)
01 - C1 - C2 - C3	41 9 (5)	C6'-C7-C8-C9	-161(8)
C1 - C2 - C3 - C4	-51 9 (5)	C10-C7-C8-C9	-790(5)
C1 - C2 - C3 - C12	73 9 (4)	C_{6} C_{7} C_{8} C_{9}	37.5 (5)
$C_1^2 - C_3^2 - C_4^2 - C_9^2$	-921(4)	C10'-C7-C8-C9	97.7 (6)
C2-C3-C4-C9	31.8 (5)	C11'-C7-C8-C9	-152.6 (9)
C12-C3-C4-C5	90.9 (5)	C5-C4-C9-01	179.4 (4)
$C_2 - C_3 - C_4 - C_5$	-145 2 (4)	$C_{3}-C_{4}-C_{9}-O_{1}$	2 3 (5)
C9-C4-C5-O3	177 6 (4)	C5-C4-C9-C8	-32(6)
			5.2 (0)

C3—C4—C5—O3	-5.3 (7)	C3—C4—C9—C8	179.7 (4)
C9—C4—C5—C6	-16.1 (6)	C1—O1—C9—C4	-17.4 (5)
C3—C4—C5—C6	161.0 (4)	C1—O1—C9—C8	164.8 (3)
C9—C4—C5—C6'	37.3 (7)	C7—C8—C9—C4	-8.8 (5)
C3—C4—C5—C6'	-145.6 (6)	C7—C8—C9—O1	168.8 (3)
O3—C5—C6—C7	-146.6 (5)	C4—C3—C12—C13	28.7 (5)
C4—C5—C6—C7	46.7 (6)	C2—C3—C12—C13	-92.8 (4)
C6'—C5—C6—C7	-49.2 (8)	C4—C3—C12—C17	-154.6 (3)
O3—C5—C6'—C7	157.8 (7)	C2—C3—C12—C17	83.9 (4)
C4—C5—C6'—C7	-58.2 (10)	C17—C12—C13—C14	1.0 (5)
C6—C5—C6'—C7	48.0 (7)	C3—C12—C13—C14	177.8 (3)
C5—C6'—C7—C11	-125.9 (8)	C12—C13—C14—C15	-0.3 (5)
С5—С6'—С7—С8	47.5 (11)	C18—O4—C15—C14	-3.3 (5)
C5—C6'—C7—C10	142.8 (11)	C18—O4—C15—C16	176.7 (3)
C5—C6'—C7—C6	-46.5 (7)	C13—C14—C15—O4	179.5 (3)
C5—C6'—C7—C10'	-62.9 (11)	C13—C14—C15—C16	-0.5 (5)
C5—C6'—C7—C11'	-177.7 (10)	O4-C15-C16-C17	-179.4 (3)
C5—C6—C7—C11	-178.8 (4)	C14-C15-C16-C17	0.6 (5)
С5—С6—С7—С8	-56.3 (5)	C15-C16-C17-C12	0.1 (6)
C5—C6—C7—C6'	51.1 (7)	C13—C12—C17—C16	-0.9 (5)
C5—C6—C7—C10	59.4 (5)	C3—C12—C17—C16	-177.8 (4)

Fig. 1

Fig. 2